2014

Comments: Newborn Screening Programs and Privacy: Shifting Responsibility from the Parent to the Laboratory

Michael D. Leeb
University of Baltimore School of Law

Follow this and additional works at: http://scholarworks.law.ubalt.edu/ublr

Part of the Family Law Commons, Health Law and Policy Commons, and the Privacy Law Commons

Recommended Citation
Leeb, Michael D. (2014) "Comments: Newborn Screening Programs and Privacy: Shifting Responsibility from the Parent to the Laboratory," University of Baltimore Law Review: Vol. 44: Iss. 1, Article 5.
Available at: http://scholarworks.law.ubalt.edu/ublr/vol44/iss1/5

This Article is brought to you for free and open access by ScholarWorks@University of Baltimore School of Law. It has been accepted for inclusion in University of Baltimore Law Review by an authorized administrator of ScholarWorks@University of Baltimore School of Law. For more information, please contact snolan@ubalt.edu.
NEWBORN SCREENING PROGRAMS AND PRIVACY: SHIFTING RESPONSIBILITY FROM THE PARENT TO THE LABORATORY

I. INTRODUCTION

Imagine a parent takes her one-month-old child for a checkup only to be told by the pediatrician that the child carries a certain gene indicative of cystic fibrosis.1 The parent wonders how the pediatrician knows this information since the pediatrician never took a blood sample from the infant.2 The pediatrician explains that all newborns are screened at birth for a panel of genetic diseases as is mandated by the government.3 In many cases, however, this testing is done without proper informed consent of the parents, who are unaware that a DNA sample is being taken.4 The above story is true and resulted in multiple lawsuits in several different states claiming that the infant's privacy was violated.5

These cases resulted in reform regarding consent to newborn screenings,6 but problems still remain. The major problem facing newborn screening programs is the fact that technology has progressed tremendously since the inception of such programs.7 Newborn screening began in the 1960s and tested only a small number of diseases.8 Since then, technology has developed to the point where we cannot only test infants for a multitude of diseases, but we can sequence an entire genome and are on a path to determining the personality traits as well as physical traits of the

2. Id.
3. Id.
4. Id.
5. Id.; see, e.g., Higgins v. Tex. Dep't of Health Servs., 801 F. Supp. 2d 541, 544, 546 (W.D. Tex. 2011); Bearder v. State, 806 N.W.2d 766, 769 (Minn. 2011).
7. See Davis, supra note 6, 42.
8. Id. at 41–42.

105
patient. This progression in technology raises many privacy-rights issues, not the least of which is that the essence of a person is in danger of being inappropriately accessed or disseminated.

The solution is to, first and foremost, fundamentally change the way we view genetic information and move from our outdated way of thinking to a more modern way of thinking that is aware of the dangers new technology may pose. To do this, this Comment proposes that we implement a two-pronged approach. First, legislation should require parental informed consent in order for the infant to participate in the newborn screening program. Second, legislation should place the onus on healthcare providers, corporations, research institutions, and other entities not to violate the parents’ or infant’s privacy rights. This would effectively shift the burden away from the parent and would not put the infant’s genetic information at risk. Additionally, new legislation must be implemented that would focus specifically on encompassing and protecting all genetic information, no matter its form or method of sampling.

In Part II, this Comment will give an overview of the history of genetic testing as well as history specific to newborn screenings, including current and potential future technologies. The following section will discuss positive aspects of newborn screenings as well as the current newborn screening process and current legislation and governmental policies relating to newborn screening programs. In Part IV, this Comment will discuss negative implications associated with current newborn screening programs in the United States. In that same section, this Comment will discuss different theories as to how to solve the problems created by current newborn screening

10. See Cohen, supra note 1; see also Stefan Timmermans, Genetic Screening: Every Newborn a Patient, LOS ANGELES TIMES (July 19, 2013), http://articles.latimes.com/2013/jul/19/opinion/la-oe-timmermans-infant-genetic-screening-20130719 (discussing the harm parents suffer from false positive results).
11. See infra Part IV–V.
12. See infra Part IV.
13. See infra Part V.
14. See infra Part V.
16. See infra Part II.
17. See infra Part III.
18. See infra Part IV.
Finally, Part V of this Comment will set forth an overview of legislative guidelines which would solve many of the problems facing newborn screening programs.

II. OVERVIEW OF GENETIC TESTING AND HISTORY OF NEWBORN GENETIC SCREENINGS

A. Genetic Testing Overview

Genetic tests use drawn blood and other tissue to determine if an individual carries certain genetic disorders. To do this, the drawn blood is analyzed to determine if any changes in chromosomes, genes, or proteins exist, and “[t]he results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person’s chance of developing or passing on a genetic disorder.” There are several different methods used to test the patient’s blood sample.

First, “molecular genetic tests” analyze “single genes . . . to identify variations or mutations that lead to a genetic disorder.” Second, “chromosomal genetic tests” examine entire “chromosomes . . . to see if there are large genetic changes, such as an extra copy of a chromosome, that cause a genetic condition.” Third, “biochemical genetic tests” look at “the amount or activity level of proteins; abnormalities in either can indicate changes to the DNA that result in a genetic disorder.” Additionally, testing can be done using direct-to-consumer (DTC) testing kits. These kits allow the consumer to test for certain diseases in their own home. These DTC tests can

19. See infra Part IV.
20. See infra Part V.
23. Id.
24. Id.
25. Id.
26. Id.
27. Id. Generally, newborn screenings use the biochemical test technique to determine the existence of genetic conditions in the baby’s DNA. Frequently Asked Questions About Genetic Testing, supra note 9.
29. See id.
identify changes in some or all of an individual’s genome to detect the risk of developing particular diseases, to help develop a personalized nutrition plan, or to detect genetic markers that indicate an individual’s physical traits, ancestry, or personality.\(^{30}\) For adults, this testing is voluntary.\(^{31}\)

In 2003, researchers at the Human Genome Research Institute completed their goal of mapping and sequencing the entire human genome.\(^{32}\) Human genome “[s]equencing involves determining the order of the chemical units of DNA” and “helps determine inherited traits, like susceptibility to some diseases.”\(^{33}\) Once the sequence is known, scientists can then determine “the kind of genetic information that is carried in a particular segment of DNA.”\(^{34}\) The sequencing of the genome has given researchers a “virtual blueprint of the human being,” and future research will attempt to make sense of that “blueprint.”\(^{35}\) Additionally, sequencing the human genome is

\(^{30}\) Id.

\(^{32}\) *All About the Human Genome Project (HGP)*, Nat’l Human Genome Research Inst., http://www.genome.gov/10001772 (last updated Mar. 18, 2014). This gave researchers the ability “to read nature’s complete genetic blueprint for building a human being.” Id.

All genes are made up of stretches of these four bases, arranged in different ways and in different lengths. HGP [Human Genome Project] researchers have deciphered the human genome in three major ways: determining the order, or “sequence,” of all the bases in our genome’s DNA; making maps that show the locations of genes for major sections of all our chromosomes; and producing what are called linkage maps . . . through which inherited traits (such as those for genetic disease) can be tracked over generations.

\(^{35}\) See id.

However, this accomplishment should be viewed not as an end in itself, but rather as a starting point for even more exciting research. Armed with the human genome sequence, researchers are now trying to unravel some of biology’s most complicated processes: how a baby develops from a single cell, how genes coordinate the functions of tissues and organs, how disease predisposition occurs and how the human brain works.
expensive, but the National Human Genome Research Institute is in the process of lowering the cost of sequencing the genome to a more reasonable price.

B. Newborn Screening History

Newborn screening began in the 1960s as techniques were developed to determine whether an infant was affected by Phenylketonuria (PKU). In 1975, 90% of newborns were tested for PKU. Soon thereafter, states began implementing similar tests to determine the probability of contracting other diseases for which treatments are available. Currently, all states require newborn screening for markers of medical disorders.

In the 1990s, the tandem mass spectrometry tool enabled technicians to detect more disorders using only a single drop of blood and significantly increased the number of diseases tested by the screening panel. Further, “research has indicated that [mass spectrometry] has a false positive rate up to ten-fold lower for PKU screening than the best method previously available;” this makes it extremely effective. In addition, genome-sequencing technologies will eventually become inexpensive enough that they can be used routinely and thereby cause another rapid expansion for newborn screenings. To this point, a British company recently announced the sale of a disposable gene-sequencing device that can plug into a

36. Davis, supra note 6, at 42.
37. Schweers, supra note 6, at 875. PKU is “a rare genetic disorder that can cause mental retardation but is treatable by diet modifications if detected early.” Id.
38. Id.
39. Bleicher, supra note 31. Some of these diseases “includ[ed] congenital hypothyroidism and sickle cell disease.” Id.
40. Id.
41. Id. “A mass spectrometer sorts and counts [variously] sized molecules in the blood, somewhat like a change machine sorts coins. Unusually high levels of certain molecules indicate the enzymes that normally break down these molecules are missing or deficient, which in turn suggests a genetic disorder.” Id.
43. Id. at 147.
44. Bleicher, supra note 31 (citing Lainie Friedman Ross, an ethicist and pediatrician at the University of Chicago). Ross also says “there is the potential to test for hundreds of conditions we don’t fully understand.” Id.
computer to deliver its results; all for a price of $900.45 The private sector currently uses an even more effective way to test a patient’s blood and sequence their genome.46 This new technology uses a microchip to “screen directly for the genetic basis of various disorders.”47

III. NEWBORN SCREENING PROCESS AND LEGISLATION

A. Newborn Screening Process

Typically, a blood test is performed 24 to 48 hours after the baby is born.48 To collect a blood sample, the baby’s heel is pricked to obtain several drops of blood.49 This blood is then placed on a piece of special paper and sent for laboratory analysis.50 If there are abnormalities, “additional testing is required to confirm the [first test’s] result.”51 Moreover, “[d]ifferent labs have different procedures for notifying families and pediatricians of the results.”52 Sometimes the results are sent to the hospital where the child was born; sometimes they are sent directly to the doctor.53 Once the results are determined, laboratories keep the samples as part of a databank in accordance with the laws of the state in which the sample was taken.54

B. Newborn Screening Program Policies and Legislation

Currently, “newborn screening varies from state to state.”55 Some states test for more than twenty-nine different conditions, while other states test for fewer than fifteen conditions.56 As technology has

45. Pollack, supra note 33. This is not the only attempt at a portable, inexpensive sequencing device (though this seems to be the most successful as of yet). See id.
46. See Davis, supra note 6, at 41–42.
47. Id. at 42.
49. Id.
50. Id.
51. Id.
53. Id.
54. See Davis, supra note 6, at 47–48.
55. Newborn Screening, supra note 48. There are programs in all 50 states and the District of Columbia. Schweers, supra note 6, at 879.
56. See Schweers, supra note 6, at 879 n.48. For a full list of conditions screened for by state, see Conditions Screened by State, BABY’S FIRST TEST, http://www.babysfirsttest.org/newborn-screening/states (last visited Nov. 17, 2014).
improved, it has become easier to test for more conditions, and each state has its own ways of determining which conditions to test for.57 In addition, only the District of Columbia requires parental informed consent, while not one of the fifty states does.58 Only a few states require explicit consent from the infant’s parents for screening the infant’s blood.59 Alternatively, some states have a “mixed-consent program” that allows parents to opt-out for “routine” testing based on religious beliefs, while certain “optional” tests are opt-in programs.60

States also have their own statutes and regulations regarding what is done with the infant’s blood sample after the screening is complete.61 In many cases, the samples are stored indefinitely.62 Only a few states have regulations requiring consent in order to use the samples in future research.63

\textbf{IV. THE CURRENT AND FUTURE LANDSCAPE OF NEWBORN SCREENING PROGRAMS CREATE PRIVACY PROBLEMS FOR THE PARENT AND INFANT}

Current legislation, procedures, and technology related to newborn screenings create both positive and negative implications that can affect the infant, the parents of the infant, and public health.64 This section will first discuss some positive aspects of newborn screenings.65 Next, it will discuss some current problems associated with newborn screening programs as well as future issues that may arise.66

57 See Davis, supra note 6, at 42; Schweers, supra note 6, at 879. The determination is further complicated by the fact that there are usually a number of different advocacy groups which campaign to have certain conditions added. See id.

58 Timmermans, supra note 10. “Most states collect and test newborn samples after providing little, if any, educational primers to the parents. In fact, Michigan, Montana, Nebraska, and South Dakota do not currently provide any statutory grounds for refusal to participate.” Schweers, supra note 6, at 880. See
MICH. COMP. LAWS § 333.5431 (2001); MONT. CODE ANN. §§ 50-19-201 to -211 (2013); NEB. REV. STAT. §§ 71-519 to -524 (2009); S.D. CODIFIED LAWS §§ 34-24-17 to -25 (2011).

59 See Schweers, supra note 6, at 880. These programs are considered “opt-in.” Id.

60 Id. 880–81.

61 See Cohen, supra note 1.

62 Id. Some states allow parents to request that their infant’s DNA sample be destroyed. Id.

63 See Davis, supra note 6, at 47–48. For example, in Michigan the BioTrust for Health was created which requires parental permission before stored samples are used in research. Id.

64 Id. at 43–44.

65 See infra Part IV.A.

66 See infra Part IV.A–B.
There are many reasons why newborn screenings are a great idea for both the infant and the public at large.\(^{67}\) Sometimes medical conditions cannot be seen through a traditional physical exam.\(^{68}\) Newborn screenings allow doctors to provide better care to the infant and can prevent serious problems, such as brain and organ damage as well as death.\(^{69}\) In many cases, if it is determined that an infant has the genetic markers of a disease, then the doctor can prescribe a course of treatment or refer the parents to an appropriate specialist and prevent the infant from contracting that disease.\(^{70}\) If more infants are tested and subsequently treated for these diseases, the better the health of the public at large.

A. Improper Selection Of Conditions To Be Tested For In A Newborn

1. Problems Raised by Adult-Onset And Nontreatable Disorders

While there are certainly positive aspects to newborn screening programs as they are structured today, there are many negative aspects as well.\(^{71}\) Ellen Wright Clayton, M.D., J.D., Professor of Genetics and Health Policy at Vanderbilt University, states that it is not a good idea to test newborns for adult-onset disorders and that informed consent should be required to screen for untreatable disorders.\(^{72}\) Clayton further questions “why this screening should be done 1) by the state and 2) in the newborn period.”\(^{73}\) First, she argues that clinicians should be the ones to speak with parents about the positives and negatives involved in newborn screening, rather than

69. Id.

70. Id. For example, a doctor can prescribe a treatment plan for an infant with hypothyroidism, which is detected through newborn screening, to avoid the slowed growth and brain damage associated with hypothyroidism. Id.

71. See, e.g., Bleicher, supra note 31 (stating that parents of an infant diagnosed with latent conditions tend to fret, pursue risky tests, and avoid routine treatment). An additional problem, which will not be addressed, is that in some states courts have held that parents either do not have the right to know the results of their infant’s screening, or the laboratory is not required to notify the parents of the results. See In re Carter, 653 S.E.2d 860, 866 (Ga. Ct. App. 2007); Hanshaw v. River Valley Health Sys., 789 N.E.2d 680, 687 (Ohio Ct. App. 2003).

73. Id.
state officials. If state-run programs are tasked with obtaining parental consent, then it would "require a huge sea change since the vast majority of these programs have never sought parental permission." Second, Clayton argues that public and private clinicians continue to screen children for growth and development as well as other health problems as those children age. She argues for a staged approach to testing for disorders, where different disorders are tested for at different times in a child’s life.

While testing newborns for adult-onset and nontreatable disorders create the problems described by Clayton, that should not mean that screening for such disorders at birth should be eliminated. The real problem is not that these diseases are untreatable or don’t manifest until the child is older, but rather that parents are not educated regarding their child’s screening and are not given the chance to make an informed decision. Therefore, a tiered approach, which would create an isolated tier dedicated solely to testing for adult-onset and nontreatable disorders and which requires parental informed consent, would be appropriate.

Under many circumstances, clinicians are the best choice to educate parents before the child is born as well as during the child’s developing years. However, many parents either do not have access to consistent medical care for their child or choose not to seek out medical care. In such cases, a state program may be a more appropriate choice to educate parents who do not have regular access to a clinician’s expertise.

2. Lack Of Consensus As To Which Conditions To Test For

A glaring problem with current screening programs in the United States is that there is no consensus as to how many diseases an infant should be tested for. In order to rectify this situation, in the 1990s the Health Resources and Services Administration commissioned a
researcher to review the scientific literature and determine which tests would benefit newborns. 84 The report submitted recommended that all states screen for twenty-nine conditions and avoid screening for certain other conditions. 85 However, this did not stop some states from testing for additional disorders, even though the report advised against it. 86

The additional conditions those states tested for are not always those that doctors can accurately predict or treat. 87 For example, New York has been testing infants for Krabbe disease since 2006. 88 However, researchers do not currently understand Krabbe well enough to know when, or even if, the infant will develop symptoms (and, consequently, treatment is ineffective and inaccurate). 89 As a result, parents “do not know what to do with the information they receive from doctors,” and many “begin to worry.” 90

Forcing parents (and infants) to participate in such a public health program is unfair. 91 Given the expansion of genetic testing technology, and as genome-sequencing technologies become less expensive, there is the potential to test for hundreds of conditions which researchers and doctors do not understand. 92 It would seem unfair to force parents to submit their children to such a program when adults themselves can voluntarily decide not to participate in such a program on their own. 93 While it is exciting to have the capability to test for so many things, “[w]e shouldn’t just add these things because we can.” 94 Instead, legislation should attempt to create some uniformity by initially limiting states to testing only for

84. Id.; Recommended Uniform Screening Panel, HEALTH RESOURCES AND SERVS. ADMIN., http://www.hrsa.gov/advisorycommittees/mchbadvisory/heritabledisorders/recommendedpanel/ (last updated Apr. 2013) (recommending that thirty-one core conditions be uniformly tested).
85. Bleicher, supra note 31. It was found that some tests did not cause enough good to warrant being on the list. Id.
86. Id.
87. Id.
88. Id.
89. See id.
90. Id.
91. Id. However, it is true that testing for untreatable disorders can avoid delays in diagnosis, “providing parents with information about their children’s health, allowing the earlier initiation of interventions, learning more about the natural history of these disorders, providing reproductive information to the family, and creating more opportunities to support these families.” Clayton, supra note 72, at 201.
93. See id.
94. Id. (quoting Jeff Botkin, a medical ethicist at the University of Utah School of Medicine).
certain recommended conditions. For any additional conditions to be added to the screening process those conditions should be put through rigorous tests to determine the category that the condition belongs in. For example, a disorder might satisfy the same criteria as those disorders which are uniformly tested. Alternatively, disorders may fall under a separate category of conditions for which testing is not as reliable and/or treatment is not as successful. This categorization makes sure that conditions are not being tested for just because we can test for them. Rather, parents can become educated regarding the different categories and can make an informed decision as to whether they consent to having their child tested for those disorders.

B. A Lack Of Informed Consent Places The Burden On Parents

Another negative aspect of current newborn screening programs has to do with inadequate parental informed consent. Currently, informed consent to participate in a newborn screening program is only required in the District of Columbia and not in any other state. In many states, even though the parents are allowed to refuse, this right is meaningless, because parents are frequently not told about the test before the sample is taken.

Dena Davis, in her article Opportunistic Testing: The Death of Informed Consent?, focuses attention on the problems associated with a lack of informed consent in newborn screening programs.

95. See Recommended Uniform Screening Panel, supra note 84; Schweers, supra note 6, at 903.
96. See AM. ACAD. FAMILY PHYSICIANS, ISSUE BRIEF: NEWBORN SCREENING, (January 2006), http://www.aafp.org/dam/AAFP/documents/advocacy/workforce/scope/ES-NewbornScreening-0106.pdf (recommending possible testing procedures for states including: (1) "that their states give consideration to mandatory newborn screening for those [diseases] for which the evidence is most rigorously supportive"; (2) "that families be appropriately informed for consent"; and (3) that "[f]amily physicians and their office staffs should prepare to educate families concerning newborn screening, and to respond to questions from families concerning positive tests").
97. See Schweers, supra note 6, at 903.
98. See id.
99. See id.
100. See id.
102. Id.
103. Davis, supra note 6, at 42.
104. Davis is the Presidential Endowed Chair in Health, Humanities/Social Sciences at Lehigh University. Id. at 35.
105. Id.
First, Davis explains that there is a debate regarding how to choose which conditions are added to existing newborn screening tests. Underlying this debate is the concept of informed consent (or lack thereof) and that “[a] test given without parental consent can only ethically be defended on the grounds of potential benefit to children, backed up by strong evidence.” Davis warns that while some conditions may pass this test, others may not.

Additionally, Davis discusses how false positives can be a major problem, especially if no informed consent is required. In order to avoid these problems, Davis suggests that parents need to become more involved in newborn screening programs. To do this, parents need to receive as much information as possible during the prenatal period in order for them to acclimate to the information and ask questions.

Davis is absolutely correct, and the idea that parents must be involved and educated regarding newborn screenings is the exact reason why the burden for protecting the infant’s privacy must be shifted away from the parents. For example, society automatically assumes that patients should be informed about the procedure, risks involved, and prognosis relating to surgery and other procedures performed by physicians. Society needs to begin thinking the same way regarding newborn screening programs in order to properly protect the parent’s and, more importantly, the infant’s privacy as screening technologies become more advanced.

Further exacerbating the problem associated with this lack of proper informed consent, hospitals use a tactic known as

106. Id. at 42.
107. Id. The author writes that “the ease with which new screens can be added threatens parental rights to be aware of and consent to the medical tests conducted on their children” Id. at 48.
108. Id. at 42-43.
109. Id. at 43. PKU probably passes this test, but “[s]creening for cystic fibrosis, for example, has been controversial because not everyone agrees that there is a medical advantage to early, presymptomatic diagnosis. However, studies show that early diagnosis of cystic fibrosis prevents malnutrition and improves children’s growth and cognitive function.” Id. at 43. In addition, we need to question what counts as a “benefit.” See id.
110. Id. at 44.
111. Id. at 45.
112. Id. The author suggests several ways of doing this, including information from the internet, brochures, etc. Id. at 45-46.
113. See infra Part V.
opportunistic testing.115 Put simply, "Opportunistic testing or screening is medical testing that makes use of an 'opportunity' engendered by some other test . . . to which the patient is accustomed or has already given consent."116 In a situation in which a blood sample is used, opportunistic testing means that the "sample is drawn for an established purpose and then one or more extra tests are added" to that initial test.117 This creates obvious problems, because parents may give consent to one test, but without their knowledge be subjected to additional tests.118 How can this be acceptable, when it would not be acceptable to obtain consent for a particular heart procedure, for example, and then allow the surgeon to perform an additional procedure for which proper, explicit consent was not obtained?

Newborn screening program advocates have also tried to add more conditions to the testing list as well as incorporate genetic sequencing into the program.119 The National Institute of Child Health and Human Development and the National Human Genome Research Institute are currently funding research proposals to integrate gene sequencing technologies into newborn screening programs which may allow us to provide every newborn with a full genetic printout at birth.120 As noted above, however, sometimes these tests can yield false positives or can test for diseases that are untreatable.121 A lack of informed consent means that parents will be notified that their child has a condition they did not know was even tested for during the initial screening.122 This can devastate parents and cause them to worry.123

Furthermore, if parents do not know exactly what is being done to their child, the information being collected (in this case the infant’s DNA) can be used for nefarious purposes.124 These purposes can

\begin{flushleft}
115 See Davis, supra note 6, at 36.
116 Id. The term "implies 'piggybacking' one intervention onto another and thus exploiting an opportunity." Id.
117 Id.
118 Id.
119 Timmermans, supra note 10.
120 Id.
121 Id.
122 Id.
123 Id.
124 See, e.g., Becca Aaronson, Lawsuit Alleges DSHS Sold Baby DNA Samples, TEX. TRIBUNE (Dec. 8, 2010), http://www.texastribune.org/2010/12/08/lawsuit-alleges-dshs-sold-baby-dna-samples/ (indicating that the Texas Department of State Health
include unlawfully distributing infant blood samples or giving samples to outside researchers without consent.125

Rachel L. Schweers points out correctly that since each state has its own rules, there is no true uniformity regarding these programs, and as a result privacy rights are eroded and in some cases violated.126 Schweers suggests that there should be a model newborn screening statute among all programs throughout the country.127 This model should require explicit informed consent from the parents.128 In addition, discussions with healthcare providers should include (1) the conditions tested, (2) “the disclosure of the results,” (3) “the retention time or . . . destruction of the sample,” and (4) “the permissible research uses of the sample.”129 Schweers suggests that there should be a tiered system regarding which conditions are tested for and what amount of consent is required.130 Schweers writes that the only standard conditions which should be tested for are those that are “known to benefit from diagnosis and treatment at an early stage in life.”131 With regard to permissible research uses, Schweers suggests “parents should be given the option of electing sample retention for no longer than eighteen years”132

C. Genome Sequencing As The Future of Newborn Screenings

In the field of genomics, the goal of technology moving forward is to have the ability to sequence an entire genome quickly, accurately, and for low cost.133 Cost is one of the most significant barriers to creating widely available sequencing opportunities, but next-generation technologies indicate that low-cost genome sequencing is on the way.134 Further, genome sequencing has tremendous value:

Services sold and distributed infant blood samples to outside laboratories without parental consent).

125. See id.; Cohen, supra note 1.
126. Schweers, supra note 6, at 879.
127. Id. at 900.
128. Id. 900–01.
129. Id. at 900-901.
130. See id. at 903.
131. Id.
132. Id. at 904.
133. Mark A. Rothstein, Column, Currents in Contemporary Bioethics: The Case Against Precipitous, Population-Wide, Whole-Genome Sequencing, 40 J.L. MED. & ETHICS 682, 682 (2012). Mr. Rothstein “is the Herbert F. Boehl Chair of Law and Medicine and Director, Institute for Bioethics, Health Policy and Law, University of Louisville School of Medicine.” Id.
134. See id.
[I]n elucidating the genetic etiology of rare disorders, in identifying atypical variants in common diseases, in determining pharmacogenomically appropriate drugs and dosages, in performing tumor genome sequencing, and in aiding other clinical applications for the diagnosis and treatment of individuals who are *symptomatic* or whose family health history places them at substantial risk.135

Moreover, the development, promotion, and use of new sequencing technologies will not slow down as a result of societal opinions, and as soon as it is technically and financially feasible, population-wide genome sequencing will occur.136

Mark Rothstein critically evaluates population-wide, whole-genome sequencing and concludes that the costs associated with such sequencing outweigh any potential benefits.137 Rothstein’s concerns with population-wide, whole-genome sequencing are numerous (only a few of which are discussed here).138

First, “[i]t is not clear how sequence data [is] interpreted.”139 Currently, no standardized software exists for performing sequencing, and it is not clear whether the FDA would have to get involved in such a process.140 Second, Rothstein questions whether health care providers have the expertise and time to translate the genome sequence data and develop prevention and treatment plans for each patient.141

Rothstein further argues that informed consent should be conducted in the clinical setting, but the sheer magnitude of information obtained from sequencing the entire genome would create numerous

\begin{itemize}
\item 135 *Id.* (emphasis in original) (footnotes omitted).
\item 136 *Id.*
\item 137 *Id.*
\item 138 *Id.* at 683–87.
\item 139 *Id.* at 684.
\item 140 See *id.*
\item 141 *Id.* at 684–85.
\end{itemize}

Physicians who routinely deal with genetics include obstetricians, pediatricians, neurologists, and oncologists. Primary care physicians generally do not have significant training or experience in traditional clinical genetics, let alone the increasingly arcane world of molecular genetics and genomics. Furthermore, third-party payers may not pay for genetic counseling, and in all but 5 states genetic counselors cannot bill for their services independent of an affiliated clinical geneticist.

Id. at 685.
problems in obtaining proper informed consent. Rothstein finds that this flaw is almost impossible to overcome, unless there is a major revolution in the healthcare field.

Finally, Rothstein argues that there is an absence of health privacy and discrimination protections. Mainly, Rothstein points to the Health Insurance Portability and Accountability Act (HIPAA) and the Genetic Information Nondiscrimination Act (GINA) as flawed legislation whose flaws are compounded when a large volume of information is generated, as is the case with whole-genome sequencing. Without solutions for the issues with this legislation, a patient's privacy and nondiscrimination rights are in jeopardy.

As discussed above, a tiered approach is an appropriate way to solve some of the above-mentioned negative aspects of newborn screening programs. This is especially true when we consider that the future of genetic testing—whole-genome sequencing—is becoming less expensive and more accurate. As sequencing begins to enter the newborn screening arena, we must be cognizant of the risks which surface if there is a severe lack of uniformity and education among parents. A tiered system which creates a separate tier for genome sequencing would help society to adjust and face the reality that genome sequencing presents.
V. AS A SOCIETY WE NEED TO CHANGE THE WAY WE LOOK AT GENETIC INFORMATION AND SHIFT THE BURDEN OF PRIVACY TO LABORATORIES AND HEALTHCARE PROVIDERS

A. Society Needs To Fundamentally Change The Way We Look At Genetic Information

The United States has an outdated view regarding the privacy of newborn screenings. When newborn screening programs were first implemented and related legislation was created, genetic testing technology was not as advanced as it is today (we could only test for a few diseases and not much else). What has changed since then is that we have now unlocked the human genome and have begun reading and analyzing the sequence to learn as much as we can about human DNA. What this means is that we can now not only determine an individual’s predisposition for a multitude of diseases, but we can identify personality traits and physical traits as well. It is true that we have not progressed too far into deciphering personality and physical traits, but that ability is not so far in the distant future. The power that this technology holds creates many problems that our old way of thinking is woefully incapable of solving.

Society needs to change its thinking regarding genetic information. Genetic information is the most personal information a person can have. An individual’s genetic code can be considered a “coded future diary” and “the ultimate answer to the commandment

152. See Diane B. Paul, Promoting Safe and Effective Genetic Testing in the United States, App. 5: The History of Newborn Phenylketonuria Screening in the U.S., LAW, SCIENCE & PUBLIC HEALTH PROGRAM SITE OF LA. STATE UNIV. (Sept. 1997), http://biotech.law.lsu.edu/research/edtf/tfgt/appendix5.htm; All About the Human Genome Project (HGP), supra note 32.
153. See Paul, supra note 152.
155. See supra note 9 and accompanying text.
156. See Davis, supra note 6, at 41–42.
157. See supra Part IV.
158. See All About the Human Genome Project (HGP), supra note 32.
159. Hsu, supra note 151, at 573.
"[k]now thyself."160 It can be argued that it is even more personal and private than an individual's social security number.161 Such personal information must be protected to the greatest extent possible, and while new parents have neither the appropriate information nor the ability to refuse newborn screenings, the burden is on them to affirmatively protect their and their child's privacy.162

This Comment proposes that we implement a two-pronged approach to solve this issue.163 First, legislation should require parental informed consent in order for the infant to participate in the newborn screening program.164 This would mean a new generation of parents would be better informed about what genetic information is, what current (and potential future) technology exists, and the positives and negatives of genetic testing.165 Second, legislation should place the onus on healthcare providers, corporations, research institutions, and other entities not to violate the parents' or infant's privacy rights.166 This would effectively shift the burden away from the parent and would not put the infant's genetic information at as great a risk.167

B. Restructuring Current Newborn Screening Programs

One major issue to consider regarding newborn screening programs is which conditions to test for.168 Obviously, there are certain diseases that are treatable if detected early,169 and testing and treating those conditions can make a previously difficult or shortened life more normal.170 It is less clear whether adult onset or untreatable disorders should be included as well.171 Clayton suggests that clinicians should be the only ones who should obtain informed

160 Id. (quoting JERRY E. BISHOP & MICHAEL WALDHOLZ, GENOME: THE STORY OF THE MOST ASTONISHING SCIENTIFIC ADVENTURE OF OUR TIME 218 (Touchstone Books 1991)).

161 Genetic information should be held to a higher standard than a social security number. See The Privacy Act and the Freedom of Information Act, SOCIAL SEC. ADMIN., http://www.ssa.gov/privacyact.htm (last visited Nov. 17, 2014).

162 See Davis, supra note 6, at 42.

163 See supra Part IV.B–C.

164 See supra Part IV.B.

165 See supra Part IV.B.

166 See supra Part IV.C.

167 See supra Part IV.B.

168 See Bleicher, supra note 31.

169 See Recommended Uniform Screening Panel, supra note 84.

170 See Davis, supra note 6, at 42–43.

171 Clayton, supra note 72, at 201.
consent from parents and questions whether nontreatable disorders should be included in the testing panel to begin with.\footnote{172}

Requiring that consent only be obtained by clinicians is important in proper education of the parents.\footnote{173} Clinicians typically have close relationships with their patients and patients have a certain level of respect for their clinicians.\footnote{174} As a result, a better dialogue would occur if parents are informed of all aspects of the screening process and the clinician obtains consent.\footnote{175}

However, just because a condition is nontreatable or will not show itself until the infant is an adult should not mean that it is appropriate to deny testing for those conditions.\footnote{176} Clayton argues that what would be more appropriate is to test for such conditions on a continuous basis as the child gets older.\footnote{177} Part of the purpose of informed consent is to educate parents and allow them to make an informed decision.\footnote{178} As such, some parents may want to test the child for these conditions all at once, and it should be their choice whether or not to do so.\footnote{179}

As stated above, the foundation for good policy regarding newborn screening programs absolutely needs to start with parental informed consent.\footnote{180} Davis’s suggestion that parents should have access to a lot of information during the prenatal period is a good one.\footnote{181} However, it would not work well enough. Informed consent may solve the problem that a false positive presents,\footnote{182} but it does not solve the problem of researchers and policy-makers wanting to continue to add conditions to be tested for through a screening program.\footnote{183} Therefore, in order for a new condition to be added to the panel, it would have to pass several tests, including, but not limited to, whether it is treatable, the severity of the effects of the disorder, the reliability of testing, and the ease of testing.

In addition, from a theoretical standpoint, the model guidelines that Schweers proposes are a good start toward adequate privacy

\footnote{172}{Id. at 201–02.}
\footnote{173}{See id.}
\footnote{174}{See id.}
\footnote{175}{See id.}
\footnote{176}{See id. at 203.}
\footnote{177}{See id. at 202–03.}
\footnote{178}{See Davis, supra note 6, at 45–46.}
\footnote{179}{Clayton, supra note 72, at 203.}
\footnote{180}{See id. at 202.}
\footnote{181}{Davis, supra note 6, at 45–46.}
\footnote{182}{See id.}
\footnote{183}{See id. at 42.}
Many of the problems addressed by Schweers would be solved if states uniformly implemented her model guidelines. A tiered approach which requires informed consent at every level is a clever and potentially effective way of assuring that parents are not bombarded with too much information all at once. Each tier would consist of different tests and would require informed consent. The first level would consist of a panel of diseases which are uniformly tested by all programs. The second level should consist of tests which are less reliable and do not have as great of a success rate after treatment. The third level should consist of nontreatable disorders and adult-onset disorders. Finally, the fourth level should consist of whole-genome sequencing and related testing.

Contrary to what Rothstein argues, it is possible to overcome the costs of incorporating whole-genome sequencing into newborn screening programs. Rothstein argues that clinicians do not have the time or expertise to translate the genome sequence data and develop prevention and treatment plans for each patient. However, while it is difficult for clinicians to do this now, as technology advances, it will get easier.

C. Fixing Issues Presented by HIPAA's Framework

HIPAA is a statute that sets out rules and regulations, which ultimately create an affirmative duty on the part of the healthcare provider not to disseminate or in any other way use an individual's personal health information without the explicit consent of the individual. If an entity falls under the scope of HIPAA, "it may not disclose ‘protected health information’ without the patient’s authorization" To protect health information "[such information] must be individually identifiable and maintained by a covered [entity]." The U.S. Department of Health and Human

184. See supra text accompanying notes 128--34.
185. See Schweers, supra note 6, at 906.
186. The panel proposed by the Health Resources and Services Administration might be a reasonable option. See Recommended Uniform Screening Panel, supra note 84.
187. See Pollack, supra note 33.
188. Rothstein, supra note 133, at 685.
189. See DNA Sequencing, supra note 34.
190. See Health Information Privacy, supra note 15.
191. Hsu, supra note 151, at 578.
Services considers genetic information to be included in this definition. However, HIPAA does not apply to all genetic screenings, because the "default guardian[s] of personal genetic information" are not "covered entities" under HIPAA. Furthermore, HIPAA "does little to limit secondary uses of health information."195

In addition to legislation that would create uniformity and require informed consent, legislation should include requirements similar to HIPAA but tailored specifically toward an expanded definition of the term "genetic information" and which apply to a wider range of entities. First, in such legislation, the term "genetic information" should be defined to include any information about a genetic test, including analyses of "human DNA, RNA, chromosomes, proteins, or metabolites," as long as the analysis "detects genotypes, mutations, or chromosomal changes." Further, "genetic information" should include any information relating to an individual’s genetic counseling or genetic education. Finally, "genetic information" should include any method of obtaining the sample, such as via blood, skin, or hair.

Second, legislation would seek to encompass entities which are not included in HIPAA. The term "covered entities" would be defined as any entity that obtains the genetic information of an individual through a newborn screening program or voluntary genetic test. These entities would consist of covered entities, as described in HIPAA, as well as corporations, research institutions, public and

193. Health Information Privacy, supra note 15. But it is not specified what "genetic information" includes. See 45 C.F.R § 160.103.
196. See supra Part IV.B.
198. Id.
199. See id.
201. See Ellen Wright Clayton, Screening and Treatment of Newborns, 29 HOUS. L. REV. 85, 144-45 (1992); supra Part I.
private universities, and testing laboratories.\(^{202}\) Increasing the scope of covered entities would assure that an individual’s privacy rights are not in jeopardy simply because an entity does not fit into the statute’s definition.\(^{203}\) Overall, if the above definitions are incorporated into legislation, the main issues presented by HIPAA are eliminated and the burden on protecting the infant’s privacy is shifted away from parents and onto the entities conducting the analyses.

VI. CONCLUSION

While there are many obvious positives to newborn genetic screenings, we must realize that some problems with current programs create privacy issues for the infant.\(^{204}\) Current and future genetic testing technology holds tremendous power which can affect the lives of parents and their children.\(^{205}\) In order to fully protect an infant’s privacy rights relating to their genetic information, society must change from its old way of thinking about what genetic information is.\(^{206}\) To do this, this Comment proposes that not only should we require parents to be informed of newborn screening technologies, processes, and policies, but a statute should exist which is similar in effect to HIPAA that will create an affirmative duty of confidentiality on any entity or person who becomes associated with the infant’s genetic information.\(^{207}\)

Michael D. Leeb*

* J.D. Candidate, May 2015, University of Baltimore School of Law. I would like to personally thank Professor Colin Starger for his invaluable guidance and support throughout the writing process.

203. See Rothstein, supra note 135, at 686 (acknowledging the limited protection provided by HIPAA due to the limited scope of covered entities).
204. See supra Part IV.B.
205. See supra Part IV.
206. See supra Part V.A.
207. See supra Part V.